The Kidney in Hypertension

Kim Harper, MD
Division of Nephrology
Scripps Clinic
August 7, 2011

Outline

- Pathophysiology of hypertension in chronic kidney disease (CKD)
 - Renin-Angiotensin-Aldosterone System
- Case Study #1
 - Hypertension in Proteinuric Hypertensive Nephrosclerosis
- Case Study #2
 - Hypertension in Chronic Kidney Disease and Fluid Overload
- Case Study #3
 - Hypertension in Diabetic Nephropathy
- New potential therapies on the horizon

Stimuli to Increase Renin Production

- Mechanical
 - Decrease stretch/low blood pressure
- Chemical
 - Decrease sodium delivery to macula densa
- Neuronal
 - Increase in sympathetic tone

Case Study #1

- 63 yo woman with hypertension and hypertensive nephrosclerosis presents for follow up
- Medications:
 - Lisinopril 20mg qd
 - Amlodipine 5mg qd
- VS: 154/84, 74

- Labs: Creat 1.3(baseline), normal electrolytes,
 spot urine protein/spot urine creatinine = 1.5g
- You increase lisinopril to 40mg qd and recheck basic metabolic panel in 1 week
- Creat now 1.6, normal electrolytes

Case Study #1:Question #1

- What do you do?
 - A. Stop lisinopril and instead increase amlodipine
 - B. Decrease lisinopril back to 20mg and increase amlodipine instead
 - C. Make no change in medications and repeat basic metabolic panel in 1 week
 - D. Panic

Answer

- C
- Make no change in medications and repeat basic metabolic panel in 1 week

Why Do We Tolerate an Increase in Creatinine?

 Answer: There is an initial decrease in GFR which is reversible. Ultimately there is a slower decline in kidney function over time.

	Baseline	4 weeks	P
BP (mm Hg)*	140/82 (2/1)	151/89 (2/1)	< 0.0005
MAP (mm Hg) ^a	101(1)	109(1)	< 0.0001
GFR (ml/min/1.73 m ²) ^a	76 (4)	81 (4)	< 0.0001
Albuminuria (mg/24 hr)b	704 (1.2)	1122 (1.2)	< 0.0001

Hansen et al. Kidney Int 1995;47:1726-1731.

Case Study #2

- 77 yo man with hypertenisive nephrosclerosis, CHF, chronic LE edema with recurrent cellulitis presents for routine follow-up
- Medications
 - Aspirin
 - Coreg 80mg qd
 - Benazepril 40mg bid
 - Furosemide 60mg qd

- PE
 - 179/83, 56, 317 lbs (nl 300 lbs)
 - Neck elevated JVP
 - Lung clear
 - CV RRR
 - Ext marked edema
- Labs
 - Creat 1.6 (baseline 1.9), nl electrolytes, Hgb 9.6 (baseline 11.2)

Case Study #2:Question #1

- His creatinine is better (1.6 vs 1.9). Is his kidney function
 - A. Better
 - B. Worse
 - C. The Same
 - D. Can't tell

ANSWER

- D
- Can't tell

Creatinine Is a Concentration

- Our patient has a decrease in serum creatinine in setting of severe fluid overload
- The creatinine can be falsely lower in this situation secondary to a dilutional effect

- Patient advised to increase furosemide to 100mg a day and recheck basic metabolic panel in a week.
- Repeat lab shows creatinine up to 2.3 from 1.6

Case Study #2:Question #2

What do you do?

- A. Advise patient to stop diuretic and repeat lab in a week
- B. Advise patient to stop diuretic and aceinhibitor and repeat lab in 1 week
- C. Advise patient to continue current medications and repeat lab in 1 week
- D. Panic

ANSWER

- C
- Advise patient to continue current medications and repeat lab in 1 week

Importance of fluid control

- Cardiac function
- Blood pressure management
- Decrease risk of recurrent cellulitis
- Patient comfort/mobility
- Treat the patient, not the number (creatinine)

- Patient returns after 1 month
- PE
- 114/65, weight 305lbs
- Improved LE edema
- Hgb up to 10.7, creatinine steady at 2.3

Case Study #2: Question #1 - Revisited

- His creatinine is better (1.6 vs 1.9). This is in a setting of fluid overload. Is his kidney function
 - A. Better
 - B. Worse
 - C. The Same
 - D. Can't tell
- Answer B. worse new creatinine is 2.3

- 67 yo woman with poorly controlled diabetes, diabetic retinopathy, diabetic nephropathy presents for routine follow up
- Medications
 - Lisinopril 20mg qd
 - Insulin
 - Amlodipine 5mg qd
 - Simvastatin 10mg

Case Study #3

- PE
- 165/95, 71, BMI 36
- Ext trace edema
- Labs
- Creat 1.2, K 5.5, albuminuria 3500mg

Case Study #3: Question #1

How do you treat her HTN?

- A. Advise her to exercise, watch sodium, and lose weight
- B. Increase lisinopril, add thiazide diuretic, and check basic metabolic panel in 1 week
- C. Stop Ace-inhibitor and increase amlodipine/start another agent
- D. A&B
- E. A&C

ANSWER

- D
- Advise her to exercise, watch sodium and lose weight
- Increase lisinopril, start thiazide diuretic and check basic metabolic panel in 1 week

Lifestyle Modificati	ions - JNC7
Modification	Approximate SBP Reduction (range)
Weight Reduction	5-10 mmHg/10kg
Dietary sodium reduction	2-8 mmHg
Physical activity	4-9 mmHg
Moderation of alcohol consumption	2–4 mmHg
	JNC 7. <i>JAMA</i> . 2003;289:2560-2572.

Issues

Decrease Progression of Diabetic Nephropathy
Control Hypertension
Decrease Proteinuria (RAAS blockers)

Control of Potassium

Hyperkalemia in Diabetes

- Type 4 renal tubular acidosis (hyporeninemic hypoalderstonism)
- Medications induce hyperkalemia all RAAS blockers (Ace-Inhibitors, ARBs, Renininhibitors, aldosterone antagonists)

Control of Hyperkalemia

- Need to monitor patients
- Dietary potassium restriction (less than 2000-3000mg/day)
- Use of diuretics (thiazides and loop diuretics)

Potential Treatments on the Horizon

- Hypertension Vaccine
- Renal Denervation
- Vasopeptidase Inhibitors

	100 µg		300 µg	VOI NOT
	Placebo (n=12)	AngQb (n=22)	Placebo (n=12)	AngQb (n=21)
Systolic blood pressure day	-3-4 (2-3)	-1-5 (1-7)	3-4 (2-8)	-5·5 (2·1)*
Piastolic blood pressure day	-1-6 (1-8)	0.0 (1.3)	1.1 (1.7)	-2.9 (1.2)†
ystolic blood pressure night	-2-6 (3-2)	1-1 (2.3)	-2-5 (4-0)	-1-2 (3-0)
iastolic blood pressure night	1-7 (2-0)	1-3 (1-5)	-1-8 (2-3)	-0-8 (1-7)
sta are mean (SE). *p=0.012 com sble 5: Change from baseline		Di Caralle Di		OL 10

Vasopeptidase Inhibitors

- Inhibit angiotensin coverting enzyme
- Inhibit neutral endopeptidase
 - Prolongs activation of natriuretic peptides

Summary

- Kidney disease and hypertension go hand in hand
- Importance of blood pressure control (<130/80)
- Importance of decreasing proteinuria
- Watch for hyperkalemia